早稲田大学 人間科学学術院 人間科学会 諸費用補助成果報告書 (Web 公開用)

申請者(ふりがな)	趙嘉寧(ちょう かねい)ZHAO JIANING
所属・資格(※学生は課程・	
学年を記載。卒業生・修了生は	博士後期課程 2 年
卒業・修了年月も記載)	
発表年月	2024 年 11 月
または事業開催年月	2024 中 11 月
発表学会・大会	IEEE CyberSciTech/PICom/DASC/CBDCom 2024
または事業名・開催場所	
発表者(※学会発表の場合	
のみ記載、共同発表者の氏	ZHAO JIANING、Qun JIN
名も記載すること)	
発表題目(※学会発表の場	A Two-Stage Depression Recognition Model Based on Improved YOLOv5
合のみ記載)	and Spatial-Temporal CNN Transformer Network

発表の概要と成果(抄録を公開している URL がある場合、「概要・成果」を記載した上で、URL を末尾に記してください。また、抄録 PDF は別途ご提出ください。なお、抄録 PDF は Web 上には公開されません。)

Depression poses significant threats to both physical and mental health, making accurate prediction methods essential. This paper presents a two-stage depression recognition framework using an improved YOLOv5 and a spatiotemporal CNN-Transformer network. The first stage employs YOLOv5 to extract key facial features from video frames, minimizing background noise. We enhance this with a Conv Subpixel block and a Squeeze-and-Excitation module to focus on critical facial regions. The second stage uses a spatiotemporal CNN-Transformer network, with 3D convolutions capturing local features and a Global-Scope Transformer module capturing temporal and contextual dependencies. Experimental results show that our method outperforms other algorithms on a public dataset, demonstrating its effectiveness.

URL: https://conferences.computer.org/cyberscitechpub24

※無断転載禁止